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Abstract-Assuming that stress distribution near the tip of an IDterface crack in an anisotropic
composite is proportional to ~, application of the interface and boundary conditions yields
IIK(cS)II = 0, where K is a 12 x 12 complex matrix. The surfaces of the crack can be free-free, fixed­
fixed or free-fixed. For the cases of free-free and fixed-fixed cracks, explicit solutions for all cS's are
obtained. For the case of free-fixed crack, the determinant of K is reduced to a 3 x 3 determinant
which yields a sextic equation. Explicit solutions are obtained only for isotropic composites. The
special cases of a homogeneous anisotropic material with a semi-infinite crack and the half-plane
problems are also considered. Explicit solutions for cS's are obtained for all three boundary
conditions. Finally, it is shown that cS is invariant with respect to the orientation of the plane
boundary (in the case of half-plane problems), the semi-infinite crack (in the case of a crack ID a
homogeneous material) and the crack and interface (in the case of a composite with an interface
crack) relative to the materials. This is a somewhat surprising result not expected of anisotropic
materials.

I. INTRODUCTION

The problem of finding the stress singularities at the apex of an isotropic elastic wedge was
first considered by Knein[l] and Williams[2] in which they assume that the stresses near the
apex are proportional to r6, where r is the radial distance from the apex, and 6 is a constant.
It is shown that 6 < 0 when the wedge angle is larger than 1t and that the stresses are
singular at the apex. The technique is applied to a crack along[3, 4] and normal[5, 6] to the
interface and to other geometries of isotropic composites[7-12]. A systematic derivation of
the equation for finding the singularity 6 was given by Dempsey and Sinclair[12] who also
provided a large number of reference to other workers on the problem.

Investigation of the associated problems for anisotropic materials started in [13, 14]
and has become active only in the last decade. (See [15-25], for example.) For anisotropic
materials, the out-of-plane displacement is in general nonzero even if one assumed a two­
dimensional deformation. Therefore, the problem of finding the value of 6 for a composite
with an interface crack reduces to finding the roots of the determinant of K in which K is
a 12 x 12 complex matrix. In the case of a crack normal to the interface[20, 21, 25], K is an
18 x 18 complex matrix. The roots 6 can be real or complex and in general one has to locate
them numerically in the complex plane. For the stress singularities, one is interested in the
region where the real part of 6 is in the range - 1 < Re (6) < O. In many applications,
however, 6's with a positive real part are also needed[23, 26, 27]. This means that one has
to search numerically for the 6's in the region where Re (6) > - 1. For the special geometry
ofcomposite wedges considered here, explicit analytical solutions can be obtained by using
Stroh's formulation for analyzing anisotropic elastic materials.

Stroh's formulation[28, 29], which has its origin in [30], provides an elegant and
powerful method of treating a certain class of two-dimensional anisotropic elasticity prob­
lems such as dislocations, line forces and steady-state wave propagation. Unlike the two­
dimensional anisotropic solutions developed by Green and Zerna[31], which are restJicted to
plane strain deformations, the Stroh formalism applies to a wide variety oftwo-dimensional
problems in which all three displacement components are nonzero. Also, unlike the widely
used Lekhnitskii's approach[32], which breaks down for orthotropic materials[33] and
requires a special treatment[23], the Stroh formalism has no limitations except possibly for
the degenerate materials in which the eigenvalues of the elasticity constants have a repeated
root such as in isotropic materials. The problem with degenerate materials, for which other
formalisms also have, can be treated separately[34, 35]. However, the Stroh formalism has
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since been perfected by Barnett and Lothc[36, 37]. They show that many anisotropic
elasticity solutions can be expressed in terms of one or more of the three real matrices, H,
Land S, which are, in the notations of [38], -Q, 47tH and S, respectively. The three real
matrices can be determined directly by using the integral formalism ofBarnett and Lothe[36]
without the need ofcomputing the eigenvalues and eigenvectors of elasticity constants, and
thus the problem of repeated eigenvalues disappears. An excellent review on and further
developments of the Stroh formalism as well as additional references can be found in [39].
Unfortunately, Stroh's work as well as that of Barnett and Lothe have attracted little
attention from researchers in anisotropic composites. Some work in anisotropic composites
using the Stroh formalism can be found in [15, 33-35]. In this paper we use the Stroh
formalism to obtain explicit solutions to certain stress singularity problems.

We consider a special geometry of anisotropic composite wedges in which the two
individual wedges have the wedge angle 7t. In the polar coordinate system (r,O), they are
glued together along 0 = r/J, while (J = r/J ±7t are the crack surfaces which can be traction
free or fixed (Table 1). Therefore, the boundary conditions on the crack surfaces can be
free-free, fixed-fixed or free-fixed. The special cases in which both materials are identical
or one material is absent are also considered. After presenting the basic equations and the
Stroh formalism in Sections 2 and 3, we consider in Sections 4 and 5 the special cases and
in Section 6 the composite wedges. For simplicity in presentation, we assume that r/J = 0 in
these sections and prove in Section 7 that 6's so obtained apply also to r/J ::/:: O. Thus the
order of singularities 6 is invariant with respect to the orientation of the surface 0 = r/J. In
all cases it is shown that if 6 is a root so is 15 +n, where n is an integer. Therefore, it suffices

Table 1. The order ofstress singularity (0' ~ r6) for some geometry ofanisotropic elastic matenals and composites

Crack surfaces

Geometry

Case I

Case II

I Free-free

0=0 (3)

(3)

(3)

2. Fixed-fixed

0=0 (3)

(3)

(3)

3. Free-fixed
(J = cfI+7t IS
free surface

I
0= -2

I
=-2±IY

y given In (4.24)

a=-~

I Y
= -4 ±1 2

3
= -4

3 y
=-4±1 2

"I given in (4.24)

Case III

0=0, (3)

I
= -2

I
= -2±1"I

"I given In (6.16)

0=0, (3)

1
= -2

I
= -2 ±I"I

"I given in (6.27)

/2" .I.-I
e = ).+1

.I. = roots of (6.34)

For Isotropic compOSItes,
a's are given in (6.37).

Nole.' Ifais a root, so is 0+n where n IS an integer. Hence, only - I < Re (0) :ll; 0 are given In the table. In
case of a repeated root, the number In the parentheses after the aindicates the multiplicity of the root. The value
ofais independent of the onentation cP of the crack, the boundary surface, or the interface.
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to consider ~ in the region - I < Re (~) ~ O. Explicit solutions for ~'s are obtained for all
cases except Case 111-3 for which only the solutions for isotropic materials are given. In all
cases, the solutions associated with the degenerate cases of isotropic materials are deduced
which agree with the published results in the literature.

2. BASIC EQUATIONS

In a fixed rectangular coordinate system (XhX2,X3), let the stress-strain law of an
anisotropic elastic material be given by

(2.1)

where the repeated indices imply summation, ulJ and eks are, respectively, the stress and
strain, and ClJks are the elasticity constants having the symmetry properties

(2.2)

If u, are the displacement components, the strain-displacement and equilibrium equations
are

(2.3)

(2.4)

in which a comma stands for partial differentiation. Use of (2.3) and (2.2) in (2.1) yields

(2.5)

Consider a two-dimensional deformation in which Uk (k = 1;2,3) depends on XI and
X2 only. Assuming that

(2.6a)

(2.6b)

where p and ak are, respectively, the eigenvalue and eigenvector of the elasticity constants
to be determined, and f is an arbitrary function of Z, (2.5) and (2.4) yield

(2.7)

(2.8)

Introducing the 3 x 3 matrices

eqn (2.8) can be rewritten in matrix notations as

{Q+p(R+RT)+p2T}a = 0,

(2.9)

(2.10)

in which the superscript T stands for the transpose. Notice that T and Q are symmetric
and positive definite if the strain energy is positive. For a nontrivial solution of a, we must
have

SAS 22:9-B

IIQ+p(R+RT)+p2TII = 0, (2.11)
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from which p can be obtained. The eigenvector a is then detennined from (2.10).
If we rewrite (2.10) as

(Q+pR)a = _p(RT+pT)a,

and Introduce a new vector

b = (R T +pT)a

= -(ljp)(Q+pR)a,

eqn (2.7) for j = I and 2 can be written as, using (2.9) and (2.13),

d
0'11 = -ph, dZ!(Z),

d
0',2 = h, dZ!(Z)'

In a polar coordinate system (r, lJ) defined by

(2.12)

(2.13)

(2.14)

Xt=rcoslJ,

the complex variable Z becomes

X2 = r sin lJ, (2.15)

Z = r(cos lJ+p sin lJ). (2.16)

Let I, be the surface traction vector on a radial plane which makes an angle ewith the
x I-axis. Since the unit nonnal to the radial plane is n, = ( - sin e, cos e, 0), we have

or, using (2.14) and (2.16),

(2.17)

Thus b is proportional to t while a is proportional to u. Notice that the complex variable
Z is of order r according to (2.16).

3. THE SEXTIC FORMALISM OF STROH

The two equations in (2.13) can be written as an eigenvalue problem

N~ =p~,

in which

(3.1)

Therefore p is a root of

T-l ]
-RT-I ' ~ = [:} (3.2)

liN-pIli = O. (3.3)

Equation (3.3) is an alternate fonn of (2.11). Notice that the left-hand side of (3.3) is a 6 x 6
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determinant, while that of (2.11) is a 3 x 3 determinant. It can be shown[30] that p cannot
be real if the strain energy is positive. We therefore have three pairs of complex conjugates
for p. IfP.., (m = 1,2, ... ,6) are the roots, we let

Pm+ 3 = Pm (w = 1,2,3), (3.4)

where an over b~\r denotes the complex conjugate. The eigenvectors ~'" have the similar
property

~m+ 3 = ~m (w = 1,2,3). (3.5)

Unless stated otherwise, we assume that P", are distinct. The degenerate case in which p", is
a repeated eigenvalue is studied in [39].

Introducing the 6 x 6 matrix

(3.6)

we have

-RT-IJ
T-l . (3.7)

Since T and Q are symmetric,

IN = (IN)T = NTJ.

Rewriting (3.1) as

(IN)~.= pJ~,

in which (IN) and J are symmetric, it can be shown that[40]

(3.8)

(3.9)

if w oF t/J. (3.10)

This orthogonality relation was first derived by Stroh[28]. In view of the fact that ~m is
uniquely determined up to an arbitrary multiplicative constant, we can normalize the vector
~m by letting

(3.11 )

where awl/! is the Kronecker delta. If we define the 3 x 3 matrices A and B by

(3.12)

and the 6 x 6 matrix U by

(3.13)

it follows from (3.11) that

UTJU = I. (3.14)
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Performing the matrix multiplicatIOn on the left-hand side using the definition of U and J
from (3.13) and (3.6), we obtain the following form for the orthogonality relations

ATB+BTA = I = A7B+D TA,

ATD+BTA =°= DTA+ATB.

(3.15a)

(3.15b)

On the other hand, (3.14) implies that UT is the inverse of (JU), and hence the product of
U T and (JU) can be interchanged. Therefore,

or

JUU T = I,

UU T = J.

(3.16a)

(3.l6b)

By performing the matrix multiplication on the left-hand side, we have the closure
relations[29]

AAT+AAT= °= BBT+ DDT,

BAT+DXT = I = ABT+XDT.

Equations (3.17a) imply that AAT and BBT are purely imaginary. Let

H = 2iAAT= HT,

L = -2iBBT = LT,

(3.17a)

(3.17b)

(3.18)

(3.19)

where Hand L are real and symmetric matrices. Moreover, it can be shown that both H
and L are positive definite if the strain energy is[39]. Consequently, (3.18) and (3.19) insure
that A and Bare nonsingu1ar. Equations (3.17b) imply that

ABT = HI-IS),

8 = i(2ABT - I),

(3.20a)

(3.20b)

where 8 is real. Using (3.18)-(3.20) and the fact that Ab- ' = ABT(BBT)-I and BA-1 =
(ABT)T(AAT)-I, we have

AB - I = - (8 + 11)L- 1 = L - I(ST -11),

BA-I = (ST +11)H-I = -H-1(S-11).

(3.21)

(3.22)

The second equality in (3.21) and (3.22) comes from the identities (3.23b) and (3.24b), which
show below that 8L-1 and STH- 1 are antisymmetric.

The real matrices H, Land 8 are not entirely independent. Indeed they are related by
the following identities:

LS+STL = 0,

SL-I+L-1ST= 0,

HST+SH = 0,

STH-I+H-1S = 0,

HL-SS= I.

(3.23a)

(3.23b)

(3.24a)

(3.24b)

(3.25)

Identities (3.23a), (3.24a) and (3.25) can be verified by a direct substitution of H, Land S
from (3.18) to (3.20) with the aid of (3.15a). Identity (3.23b) is obtained from (3.23a) by



Explicit solutIOn and invanancc of the slngulantle~ at an Interface crack 971

premultiplying and post-multiplying by L - '. Similarly, (3.24b) is obtained from (3.24a) by
multiplying by H- '.

All equations derived so far, starting from (3.11), are based on the assumption that
the eigenvalues P",'s are distinct. In the degenerate cases in which p", is a repeated root, say
of multiplicity 3, the derivation remains valid if the degeneracy is "semisimple", Le. if three
independent eigenvectors ~". associated with the repeated p", exist. If the degeneracy is
"nonsemisimple", such as in the case of isotropic materials in which p", = i is a triple root
but only two independent ~",'s exist, one may introduce generalized eigenvectors[39] so that
most of the equations derived remain valid. In many anisotropic elasticity problems includ­
ing the one in this paper, the final solution requires only one or more of the three real
matrices H, Land 5, notp"" A or B, which are complex. In [36], Barnett and Lothe introduce
an integral formalism to determine H, Land 5 directly from a generalized definition of Q,
Rand T of (2.9). Their approach eliminates the need of finding the eigenvalues p", and
eigenvectors ~IJJ so that the problem of repeated eigenvalues disappears. We list below the
expression for H, Land 5 for isotropic materials[38] :

[m-l 0

~lH=_l 0 m-I
pm 0 0

L-~[~
0

~l4
m 0 0

s_.!-[m~2
-(m-2) n0

m 0 0

m == 4(l-v), 2 ~m ~4.

(3.26)

(3.27)

(3.28)

(3.29)

In the above, J.t and v are, respectively, the shear modulus and Poisson's ratio. In the
notations of [38] and [39], H, L, 5 are -Q, 41tB, 5 and 52' -53,5" respectively.

4. ELASTIC WEDGE OF WEDGE ANGLE 1t

To find the stress singularities at the apex of an anisotropic elastic wedge ofany wedge
angle, we choose

f(Z) == Z6+l/(O+ 1) (4.1)

in (2.6a), (2.7) and (2.17) and linearly superimpose solutions associated with the six p",'s.
For (2.6a) and (2.17), we have

3

u(8) = L (q",a",Z~+1 +h..i",2~+I)/(o+ 1),
",-I

in which q", and hw are arbitrary constants and

(4.2)

(4.3)

(4.4)

We see that with the assumption of (4.1) the stresses given by (2.7) as well as the surface
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traction vector t of (4.3) are of the order ,-6. The stresses are singular if the real part of (J is
negative. For the strain energy to be bounded at the wedge apex, we require that
Re (15) > - 1. If the wedge is bounded by () 1 ~ () ~ () 2 and the boundary conditions on the
radial surfaces () = () I and (}2 are either traction-free (t = 0) or fixed (u = 0), application of
(4.2) and (4.3) yields a system of homogeneous equations for q", and h",. If K(15) is the
coefficient matrix of q", and h"" a nontrivial solution of q", and h", demands that

IIK(15)1I = 0, (4.5)

which provides the desired 15. In applications, one is interested in (J's whose real part is
negative as well as positive[23, 26, 27]. Thus one has to search numerically for the roots of
(4.5) in the region Re (15) > -1 of the complex plane 15. Notice that K(15) is a 6 x 6 matrix
for the single wedge problem and a 12 x 12 matrix for the composite wedge that we will
discuss in Section 6.

In this paper we will study special wedges and composite wedges whose wedge angle
is either n or 2n. In all cases, the determinant (4.5) can be simplified substantially and an
explicit solution for 15 is obtained except for Case III-3. We will show that if 15 is a root, so
is 15+n, where n is an integer. Hence we can focus our attention on -1 < Re({J) ~ O. We
will also see that if the wedge boundaries are the radial planes () = ¢ and () = ¢ ±n, 15 is
independent of ¢. For simplicity in presentation, however, we will present 15 for ¢ = 0 and
leave the proof of invariance to Section 7. Noticing that

(4.2) and (4..3) yield

when () = 0,
when () = ±n, (4.6)

u(O) = ,-6+ I(Aq+ Ah)/(15 + 1)

t(O) = ,-6(Bq +Db)

(4.7)

(4.8)

(4.9)

(4.10)

where q and hare 1 x 3 matrices whose elements are q", and h", (co = 1,2,3), respectively.
In (4.9) and (4.10) we have made use of the property that e±J(6+1)1I = _e±1611.

Consider now an elastic wedge of wedge angle n which occupies the region 0 ~ () ~ n.
The radial planes () = 0 and () = n can be traction free or fixed. We will discuss the three
possible combinations of boundary conditions separately.

Case /-1. Free-free wedge
In this case, t(O) = t(n) = 0 and (4.8) and (4.10) yield

Bq+8b = 0,

Elimination of Db results in the equation

Since B is nonsingular, for a nontrivial solution of q we must have

(4.11)

(4.12)

(4.13)

(4.14)
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We see that if () is a root, so is () +n, where n is any integer. For - I < Re (A.) ~ 0, the only
root is () = O. Moreover, () = 0 is a root of multiplicity three (Table I).

Case /-2. Fixed-fixed wedge
In this case, u(O) = u(7t) = 0 and (4.7) and (4.9) yield the same result as (4.14). Hence

() = 0 is a triple root (Table I). Notice that in this case as well as in Case I-I, the {)'s are
independent ofmaterial property. Hence the ()'s remain the same if the half-plane boundary
is at 8 = rjJ instead of 8 = 0 where rjJ is an arbitrary angle.

Case /-3. Free-fixed wedge
When t(7t) = u(O) = 0, we have (4.12) and

Aq+Ah = O.

If we solve for h from (4.12),

and substitute into (4.15), we have

For a nontrivial solution of q, we have

or, using (3.21),

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

We see that if () is a root, so is {)+n where n is an integer. Since L -I is positive definite, the
determinant is nonzero when we set () = O. Hence (l_e'26~) :F 0 and we may write (4.19) as

in which

or

By writing (4.20) as

IIS+iAIII = 0, (4.20)

(4.21a)

(4.2Ib)

where (SL -1) is antisymmetric according to (3.23b), the theorem proved in the Appendix
applies here. If we identify (SL-I) and L-I as Wand D in eqn (AI), eqn (A2) becomes

and (A3) gives

A= 0,

(4.22)

(4.23)
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With). given by (4.23), (4.2Ib) yields (Table 1)

tJ = - L
(4.24)

Notice that y depends on the material property. If the half-plane boundary were at
() = <P instead of () = 0, we could use a new coordinate system (xf, x1, xT) in which the
xT-axis is the half-plane boundary. The material constants referred to this new coordinate
system would be different and so would y. However, we will show in Section 7 that y and
hence tJ are invariant with respect to the orientation of the half-plane boundary.

For isotropic materials, S is given by (3.28) and

{3 = (m-2)jm < 1.

Hence y of (4.24) is real and given by

y = (l/2n) In(m-l).

(4.25)

(4.26)

This agrees with the result obtained in [2] for an isotropic wedge of wedge angle n. Notice
that the singularity tJ = ! in (4.24) is, for isotropic materials, associated with the out-of­
plane displacement while tJ = - ~ ± iy are associated with in-plane displacements.

5. ELASTIC WEDGE OF WEDGE ANGLE 2n (A CRACK)

In this section we consider a crack along the negative xI-axis. Thus the material
occupies the region -n ~ () ~ n. Again, there are three possible combinations of the
boundary conditions at () = ±n. We will see that if iJ is a root for Case I, iJ/2 is a root for
Case II.

Case II-i. Free-free wedge
In this case, t(n) = t( -n) = 0 and (4.10) yields (4.12) and

Bq + e,2cln Db = O.

Elimination ofD~ between (4.12) and (5.1) leads to

(5.1)

(5.2)

This is identical to (4.13) if we replace iJ in (5.2) by iJj2. Thus the values of iJ for this case
are one-half of the values of iJ in Case I-I. To obtain iJ from Case 1-1, we should extend'
the range of iJ to - 2 < Re (iJ) ~ 0 in Case I-I. Now since iJ = -1 and 0 are roots for Case
I-I, iJ = - t and 0 are the roots in the range - 1 < Re (tJ) ~ 0 here. Moreover. the roots
are of multiplicity 3 (Table I).

Case II-2. Fixed-fixed wedge
We have u(n) = u( -n) = 0 for this case, and it is not difficult to see that application

of (4,9) yields the same iJ as in Case II-I.

Case II-3. Free-fixed wedge
When t(n) = u( -n) = 0, the equations are given by (4.12) or (4.16) and

Aq+e'2clnAh = o. (5.3)
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If we substitute h from (4.16), we obtain

975

(5.4)

This is identical to (4.17) except a factor of 2 for the c5. Hence the solution for {j can be
deduced from (4.24) as

{j = - i, (5.5a)

where y is defined in (4.24). In (4.24) {j -I is also a root and one-half of {j -I in (4.24) yields

{j = - i, {j = - ~ ± ;(y/2). (5.5b)

Thus there are six stress singularities for this case versus three for Case 1-3 (Table I).
The solution for the special case of isotropic materials[2] is obtained when y of (4.26)

is used in (5.5). For isotropic materials, {j = - i and - i are the singularities associated
with out-of-plane displacement, while (j = - i± ;(y/2) and - i± i(y/2) are associated with
the in-plane displacements.

6. INTERFACE CRACK

Let the x I-axis be the interface between two anisotropic elastic materials and let the
negative x I-axis be the interface crack. Thus one material occupies the region 0 ~ (J ~ 7t

while the other material -7t ~ (J ~ O. We will use a superscript prime to indicate those
quantities associated with the material in -7t ~ (J ~ O. The continuity ofdisplacements and
surface traction across the interface at () = 0 imply that u(O) = u'(O) and t(O) = t'(O), or by
(4.7) and (4.8),

Aq+Ah = A'q'+A'h',

Bq+Bh = B'q' +B'h'.

We now consider various boundary conditions at () = ± 7t.

Case III-I. Free-free crack
When t(7t) = t'( -7t) = 0, we have from (4.10)

e,2<l"Bq+Bh = 0,

or

Equations (6.1) and (6.2) can now be written as

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

The vanishing of the determinant of the coefficient matrix of (Bq, B'h') reduces to either

(6.9)

or

(6.10)
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We see that if f> is a root, so is f>+n, where n is an integer. As before, we limit our attentIOn
to - 1 < Re (f» ~ O. Equation (6.9) implies that f> = 0 is a root of multiplicity 3 (Table I).
We will next study the roots of (6.10).

Using the expressions for AB- 1 from (3.21), we obtain

where

AB-1-A'D'-1 = -(W+ID),

AD-I_A'B'-I = -(W-ID).

W = SL-I_S'L'-l,

(6.11)

(6.12)

Notice that D is symmetric, positive definite and W is antisymmetric. Equation (6.10) can
be rewritten in terms of real matrices Wand D as

Since f> = 0 is not a root of(6.13), (l_e'26K) :F 0, and we may write

IIW+iA.DII = 0,

(6.13)

(6.14)

where A. is defined in (4.21a). It is shown in the Appendix that the three roots of (6.14) are
all real and are given by

A.=O, A.=±P,

P=[- ! tr (WD- 1)2]1/2•

With A. given by (6.15), f> of (4.21 b) can be written as (Table 1)

(6.15)

f> = -~, f> = - !±iy,
(6.16)

Equation (6.16) gives an explicit expression for the f>'s. The fact that the singularities at an
interface crack tip of an anisotropic composite can be written as f> = - ~± iy was stated in
[24], but no proof was given. Nor was the expression for y given except for a cross-ply
composite.

For isotropic materials, f> = -! is associated with deformations due to antlplane
displacements and f> = -!± iy are associated with that due to in-plane displacements. The
latter has been obtained in [3] and reproduced in [8] in a compact form. Using Land S in
(3.27) and (3.28) for isotropic materials, (6.12) and (6.16) yield

Jl' (I - 2v) - Jl(1 - 2v')

P= 2(Jl'(l-v)+Jl(I-v')]'
(6.17)

With Pgiven by (6.17), y of (6.16) agrees with that obtained in [8]. Notice that Pgiven by
(6.17) is one of the two nondimensional parameters for isotropic composites introduced by
Dundurs[41].

Case 1II-2. Fixed-fixed crack
With o(n) = 0'( -n) = 0, (4.9) reduces to

h = _e/26K A-IAq, (6.18)
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q'=_e,26n A'-lkh', (6.19)

and (6.1) and (6.2) can be written as

(6.20)

(6.21)

For a nontrivial solution of Aq and A'h', we must have (6.9) which gives {) = 0 as a triple
root or

Using the expression for BA - I from (3.22), we obtain

BA-I-I'A'-I = \\'+ifi,

IA-I_B'A'-I = \\'-ifi,

where
\\' = -(H-1S-H'-IS'),

1> = H-l+H'-I.

(6.22)

(6.23)

(6.24)

Thus W is real and antisymmetric, while 1> is real, symmetric and positive definite. By
substituting (6.23) into (6.22) and observing that {) = 0 is not a root of the resulting
determinant, we have

n\\' + i;.1>n = 0, (6.25)

in which;' is defined in (4.2Ia). Equation (6.25) is similar to (6.14), and hence the roots A.
are all real (see the Appendix):

A. = 0, A. = ±p,
P= [-! tr(W1>-I)~1/2.

In terms of {) given by (4.2Ib), the roots are

{)=-!, {)=-!±iy,

I I+P
y = 21t In I-P' P= [-, tr(W1>-I)~1/2.

(6.26)

(6.27)

The associated problem for the special case of isotropic material has been investigated
by Erdogan and Gupta[lO]. In [42], composite wedges ofarbitrary wedge angles are studied.
If we use (3.26) and (3.28) in (6.24) and then (6.27), we have

J.l(m-2) (m' -I)-J.l'(m' -2)(m-l)
P= J.lrn(m'-l)+J.l'm'(m-l) .

(6.28)

With Pgiven by (6.28) for isotropic composites, y in (6.27) reproduces the result obtained
in [10]. As in Case III-I, {) = -! in (6.27) is associated with the antiplane displacements,
while {) = -!± iy are associated with in-plane displacements for isotropic materials.
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Case 111-3. Free-fixed crack
Let t(n) = u'( -n) = O. Using (6.5) and (6.19) in (6.1) and (6.2), we have

(AB- 1-e·2b• AA-')Bq = (l-e·2blt)A'h'

(l_e· 2b')Bq = (A'A'-I- e,2b·B'A'-I)A'h'.

(6.29)

(6.30)

We see that if {) is a root, so is {)+n, where n is an integer. By making use of (3.21) and
(3.22) for AB - 1and B'A' - I, and observing that {) = 0 is not a root of the resulting equations,
we have

(S + iA.I)L- IBq = - A'h',

-Bq =H'-I(S' +iA.nA'b',

where A. is defined in (4.2Ia). Substitution of A'b' from (6.31) into (6.32) yields

{H'-I(S'+iA.n(S+iA.I)L-I-I}Bq = o.

For a nontrivial solution of Bq, we must have

II(S' + iA.I)(S+ iA.I)-H'LIl = 0,

or

II(S'S-H'L)+iA.(S+S')+(iA,)2III = 0.

(6.31)

(6.32)

(6.33)

(6.34)

Equation (6.34) pr'ovides six roots for A.. a is then obtained from (4.2Ib).
The associated problem for isotropic composites does not seem to have been studied.

Ifwe use H, Land S for isotropic materials from (3.26) to (3.28) in (6.34), the six roots are

A. = ±i(p./p.')1/2, and

A. = ±P+i1/, and ±p-i1/, if p./p.' ~ f).,

A. = ±(P+1/), and ±(p-1/), if p./p.' < f).,

where

(m-m')2

f). = 4mm'(m' -I)'

p = 1-(1/m+ lIm'),

(
m' - 1 IP. 1)1/2"=2 -- --f). .

'f mm' p.'

the corresponding a's are

1 1 (p.)1/2{) = - - 1= - tan- J - ,
2 n p.'

a= -!-a±ip, and -!+a±ip, if p./p.'~f).,

a = - !±iYh and -!±iY2' if p./p.' < f).,

(6.35)

(6.36)

(6.37)
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I -l( 2" )oc=-2 tan 1 22 '
1t -p -"

I
fJ = 41t In {[(I +p)2+,,2]/[(l_p)2+,,2J},
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(6.38)

2- ln I +p+"
1'1 = 21t I _ P-" ,

I I+p-"
1'2 =-2 In I .

1t -p+"

It should be pointed out that when Jl/Jl' = A, (6.36) yields" = 0 and (6.38) provides lX = 0,
P= 1'. = h Thus lJ = - !±ifJ are double roots, and we may have additional stress singu­
larities of the form ""(1n r)[43].

To see how this case reduces to Case 11-3 when the two materials are identical, we
rewrite (6.34) as

in which

IIM+i2A.S-(,P+ 1)111 = 0,

S = t(S+S'),

M = S'S-H'L+I.

(6.39)

(6.40)

(6.41)

If M = 0, which is the case when the two materials are identical according to (3.25), we
have

IIS+iXIIi = 0, (6.42)

(6.43)

These are identical to (4.20) and (4.2Ia), respectively, except a factor of2 for lJ. This agrees
with the results stated in Case 11-3. Notice that (6.42) and (6.43) remain valid even if the
two materials in the composite are different as long as M = O. It would be interesting to
study if there exists such an anisotropic composite for which M = O. For isotropic
composites, M = 0 only if the two isotropic materials are identical.

7. INVARIANCE OF 6 WITH THE INTERFACE BOUNDARY

For the half-plane problems considered in Section 4, we could have considered the
boundary of the half-plane to be at (J = 4J instead of (J =O. Likewise, the crack in Section
5 could be located along (J = r/J. ±1t and in Section 6 the crack and interface could be located
along (J = 4J±1t and 4J, respectively. We will show in this section that lJ so obtained is
independent of 4J and hence identical to the {) for 4J = 0 considered in the previous sections.

To this end, we choose a new coordinate system (xT, x!, x1) which is related to the
original system (XhX2,X3) by

(7.1)

sin 4J
cos 4J

o
(7.2)
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so that x! = 0 is the boundary of the half-plane, the crack or the interface. The formulatIOns
and solutions in Sections 4 to 6 apply here if a superscript * is added to all quantities. For
instance, (4.18) for Case 1-3 becomes

(7.3)

It remains to prove that 0* = O. It is shown in [35] that under a change of coordinate
systems the Stroh eigenvectors a and b of (2.10) and (2.13), albeit complex valued,
transform according to the laws of transformation for tensors of order one. That is,

It follows from (3.12) that

and (7.3) reduces to

a* = na,

A* =nA,

b* = nb.

B* =nB,

(7.4)

(7.5)

or since IInll = 1,

(7.6)

(7.7)

Compared with (4.18), it is clear that 0* = O. Other cases can be proved in the same way.
A direct proof of the invariance without resorting to the coordinate transformation

can be made as follows. Noticing that Z., of (4.4) for (J = c/J and c/J ± 1t are related by (see
also Fig. 1 of [34])

(7.8)

and writing Z.,(c/J) as

(7.9)

(4.3) for (J = c/J and c/J ± 1t become

3

t(c/J) = L r6{ q.,b.,,~+ I(c/J) + h.,6.,r~+ I (c/J)}, (7.10)
.,-1

3

t(c/J±1t) = L r6{e±I(6+1)1l q.,b.,,~+I(c/J)+e=i=I(6+1}1thQl6Q.r~+1(c/J)}. (7.11)
01-1

Similar equations can be written for u(c/J) and u(c/J±1t) of (4.2). Introducing the new
coefficients

q., = q.,,~+I(c/J)

h., = hQlr~+ 1(c/J)

and noticing that e±,(6+1)1l = _e±,611, we have

(00 not summed),

(00 not summed),
(7.12)

u(c/J) = r6+ I(Ali + lli)/(c5 + 1),

t(c/J) = r6(B4 + Ali),

(7.13)

(7.14)
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(7.15)

(7.16)

Equations (7.13)-(7.16) are identical to (4.7)-(4.10) except that the undetennined
coefficients are now 4and ti instead of q and h. Therefore, () does not depend on q,. The
solutions for displacements and stresses however do depend on q, because 4and Ii, by virtue
of (7.12), depend on q,.

The only work which we are aware of and which has some relevance to the above
invariance property is the one by Barnett and Lothe[44]. They show that for dislocations
in anisotropic bicrystals, certain prelogarithmic energy factors are independent of the
orientation of the interface relative to Burger's vector in the bicrystal.

8. CONCLUDING REMARKS

When the order of stress singularity () is a complex number and the crack surface is
stress-free, the displacement becomes oscillatory near r = O. For the case of a crack with
free-free or free-fixed surface, the two crack surfaces penetrate each other. This is a
physically unacceptable phenomenon, although the region ofpenetration is rather small[4,
10]. There have been several studies on the problem to eliminate the unrealistic oscillatory
phenomenon[4~8]. We do not address to the problem in this paper. The purpose of this
paper is to illustrate Stroh's powerful and elegant formalism in obtaining explicit solutions
to a special problem. One possible way of alleviating the oscillatory phenomenon is to
introduce a contact zone near the crack tip[45]. The stress singularity at the end of the
contact zone has been analyzed in [49] for isotropic composites and in [50] for anisotropic
composites using the present formulation.

It should be pointed out that not all composites with free-free crack surfaces have the
interpenetration problem. By (6.16), the {)'s are real if {J = 0 or if W = O. It follows from
(6.12) that there is no interpenetration problem if SL- I for the two anisotropic materials
in the composite are identical. Since SL-I is antisymmetric according to (3.23b), W = 0
leads to at most three conditions for the elasticity constants to be satisfied if there is to be
no interpenetration problem. For isotropic composites, use of (3.27) and (3.28) leads to
only one condition; namely, the value of (1-2v)/Jl for the two materials to be identical.
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APPENDIX

Theorem: Let). be a ropot of the 3 x 3 determll1ant

(AI)

where D is a real, symmetric and posItIve definite matnx, while W IS a real antisymmetric matnx. Then

and the three roots are all real gIven by

(A2)

)'=0, (A3)

Proof: Equation (AI) is equivalent to

Let 110 12,1) be the principal invariants ofWD- I
. Since W is antisymmetric, IIWII = 0 and

Also,

I, = Ir(WD-I) = tr(WD-')T

= tr(D-IWT) = tr(WTD- ')

= -tr(WD- ') = -II'

Hence I, = 0 and 12 reduces 10

With II = I) = 0, expansion of the determmanl in (A4) leads to

Hence the theorem is valid provided 12 > O.
To prove 12 > 0, we diagonalize D- I as

(A4)

(AS)

(A6)

(A7)

D-' = PApT, ppT = I, (A8)

where A is a diagonal matrix with positive diagonal elements d
"

d2, d). Then

12 = - ~ tr (WPAPT)2

= - ~ tr (WPApTWPApT)

= -!tr(pTWPAP'WPA)

= -! Ir (W*AW*A),

m which W· = pTWP IS anttsymmetric. Lei

(A9)

(AlO)

Then it is readily shown that (A9) reduces to

This completes the proof.
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